Biodegradable Plastics and Polymers

(Coated Paper, Shopping Bags, Landfill Cover Film, Plant Phytotoxicity Testing, Toxicity, Fillers, Activated Sludge, Copolyesters, Monomer, Polymer, Fibre-Reinforced Composites, Biodegradable Polymers, Biodegradation, Polysaccharides, Collagen, Bacterial Cellulose, Biobased Materials)
Introduction

Biodegradable plastics are plastics that are decomposed by the action of living organisms, usually bacteria. Two basic classes of biodegradable plastics exist: Bioplastics, whose components are derived from renewable raw materials, and plastics made from petrochemicals containing biodegradable additives which enhance biodegradation.

Biodegradable polymers are a specific type of polymer that breaks down after its intended purpose to result in natural by products such as gases (CO2, N2), water, biomass, and inorganic salts. These polymers are found both naturally and synthetically made, and largely consist of ester, amide, and ether functional groups. Their properties and breakdown mechanism are determined by their exact structure. These polymers are often synthesized by condensation reactions, ring opening polymerization, and metal catalysts. There are vast examples and applications of biodegradable polymers.
This book basically deals with biodegradable plastics developments and environmental impacts, hydro biodegradable and photo biodegradable, starch synthetic aliphatic polyester blends, difference between standards for biodegradation, polybutylene succinate (pbs) and polybutylene, recent developments in the biopolymer industry, recent advances in synthesis of biopolymers by traditional methodologies, polymers, environmentally degradable synthetic biodegradable polymers as medical devices, polymers produced from classical chemical synthesis from bio based monomers, potential bio based packaging materials, conventional packaging materials, environmental impact of bio based materials: biodegradability and compostability, etc.
Environmentally acceptable degradable polymers have been defined as polymers that degrade in the environment by several mechanisms and culminate in complete biodegradation so that no residue remains in the environment. The present book gives thorough information to biodegradable plastic and polymers. This is an excellent book for scientists engineers, students and industrial researchers in the field of bio based materials.
Market Outlook

Global demand for biodegradable polymer market was valued at around USD 1.68 billion in 2014 and is expected to reach approximately USD 5.18 billion in 2020, growing at a CAGR of slightly above 21.0% between 2015 and 2020.
Global Biodegradable Polymer Market

Revenue (USD Billion)

<table>
<thead>
<tr>
<th>Year</th>
<th>Revenue</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014</td>
<td>1.68</td>
</tr>
<tr>
<td>2015</td>
<td></td>
</tr>
<tr>
<td>2016</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td></td>
</tr>
<tr>
<td>2018</td>
<td></td>
</tr>
<tr>
<td>2019</td>
<td></td>
</tr>
<tr>
<td>2020</td>
<td>5.18</td>
</tr>
</tbody>
</table>
The global market was valued at USD 2040.2 million in 2016 and is forecast to reach USD 5324.4 million by 2021.

The global biodegradable polymer market should reach 5.6 billion pounds by 2021 from 2.4 billion pounds in 2016 at a compound annual growth rate (CAGR) of 18.0%, from 2016 to 2021.
The global biodegradable polymers market to grow exponentially at a CAGR of around 21% by 2021.

Global biodegradable polymers market to grow at a CAGR of over 21% during the forecast period 2017-2021.

The global biodegradable plastics market in terms of volume is expected to grow from 664,000 metric tons in 2010 to 2330,000 metric tons by 2016, at an estimated CAGR of 20.24% from 2011 to 2016.
Global Bio Plastic Market
The global bio plastics market was 19.54 billion USD in 2016 and is estimated to reach US$ 65.58 billion in 2022 at an estimated CAGR of 22.36% for the forecasted period.
Bioplastic: US demand

- Polylactic acid: 45%
- Bio-based polyethylene: 26%
- Starch-based: 12%
- Degradable polyesters: 4%
- Cellulose: 3%
- Bio-based polyamides: 2%
- Other: 8%
The global bioplastics market to grow at a high CAGR of more than 29% by 2020. The rise in demand for eco-friendly packaging has propelled several plastic manufacturers and packaging vendors to shift towards the use of bioplastics in packaging.
Estimated Biopolymer & Bioplastic Growth

Year	Estimated Growth
2011 | 1.2
2012 | 2.16
2013 | 3.12
2014 | 4.08
2015 | 5.04
2016 | 6.96
2017 | 7.92
2018 | 8.88
2019 | 9.25
2020 | 12

www.entrepreneurindia.co
Table of Contents

1. BIODEGRADABLE PLASTICS-DEVELOPMENTS AND ENVIRONMENTAL IMPACTS

- Biodegradable
- The ASTM defines biodegradable as
- Compostable
- Compostable defined by the ASTM as
- Hydro-biodegradable and Photo-biodegradable
- Bio-erodable
- Thermoplastic Starch Products
- Degradation Mechanisms and Properties
- Starch Synthetic Aliphatic Polyester Blends
- Degradation Mechanisms and Properties
- Starch and PBS/PBSA Polyester Blends
- Degradation Mechanisms and Properties
- Starch-PVOH Blends
- Degradation Mechanisms and Properties
- PHA (Naturally Produced) Polyesters
- Degradation Mechanisms and Properties
- PHBH (Naturally Produced) Polyesters
- Degradation Mechanisms and Properties
- PLA (Renewable Resource) Polyesters
- Degradation Mechanisms and Properties
- PCL (Synthetic Aliphatic) Polyesters
- Degradation Mechanisms and Properties
- PBS (Synthetic Aliphatic) Polyesters
- Degradation Mechanisms and Properties
- AAC Copolyesters
- Degradation Mechanisms and Properties
- Modified PET
| Degradation Mechanisms and Properties |
| Water Soluble Polymers |
| Polyvinyl Alcohol (PVOH) |
| Ethylene Vinyl Alcohol (EVOH) |
| Photo-biodegradable Plastics |
| Degradation Mechanisms and Properties|
| Controlled Degradation Additive Masterbatches |
| Degradation Mechanisms and Properties|
| Coated Paper |
| Agricultural Mulch Film |
| Shopping Bags |
| Food Waste Film and Bags |
| Consumer Packaging Materials |
| Landfill Cover Film |
| Other Applications |
| Biodegradation Standards and Tests |
- American Society for Testing and Materials
- ASTM D5338-93 (Composting)
- ASTMD5209-91 (Aerobic, Sewer Sludge)
- ASTM D5210-92 (Anaerobic, Sewage Sludge)
- ASTM D5511-94 (High-solids Anaerobic Digestion)
- ASTM Tests for Specific Disposal Environments
- International Standards Research
- International Standards Organisation
- European Committee for Normalisation
- OK Compost Certification and Logo
- Compost Toxicity Tests
- Plant Phytotoxicity Testing
- Animal Toxicity Test
- Difference Between Standards for Biodegradation
- Development of Australian Standards
- Composting Facilities and Soil Burial
- Key Factors Defining Compostability
- Physical Persistence
- Chemical Persistence
- Toxicity
- Effect on Quality of Compost
- Anaerobic Digestion
- Waste Water Treatment Plants
- Reprocessing Facilities
- Landfills
- Marine and Freshwater Environments
- Litter
- Key Issues
- Recyclable Plastics Sorting Considerations
- Reprocessing Considerations
- Polyolefin Reprocessing
- Polyethylene Reprocessing
- Composting
- Landfill Degradation
- Energy Use
- Greenhouse Gas Emissions
- Pollution of Aquatic Environments
- Increased Aquatic BOD
- Water Transportable Degradation Products
- Risk to Marine Species
- Litter
- Compost Toxicity
- Recalcitrant Residues
- Aromatic Compounds
- Additives and Modifiers
- Isocyanate Coupling Agents
- Plasticisers
- Fillers
- Catalyst Residues
- Prodegradants and Other Additives
- Source of Raw Materials
Development of Australian Standards and Testing
- Life-Cycle Assessment
- Minimisation of Impact on Reprocessing
- Determination of Appropriate Disposal Environments
- Education
- Identify standards and test methods for biodegradable plastics in Australia

APPENDIX A
- Abiotic disintegration
- Activated Sludge
- Aerobic degradation
- Aliphatic-aromatic Copolyesters (AAC)
- Aliphatic polyesters (e.g. PCL)
- Amylose
- Anaerobic degradation
- ASTM
- Bioassimilation
- Biodegradable
- Bioerodable
- Biomass
- Compostable
- Compostable Plastics
- Composting
- Copolyesters
- Decomposer organism
- Degradability
- Degradable PET
- Ecotoxicity
- Foamed starch
- Functional Group
- Humus
- Hydrolysis
- LCA
- Masterbatch
- Mineralisation
- Modified PET
- Monomer
- Organic Recycling
- Photo-biodegradation
- Photodegradable
- Phytotoxicity
- Plastified Starch
- Polybutylene succinate (PBS) and polybutylene succinate adipate (PBSA)
- Polycaprolactone (PCL)
- Polyesters
- Polyhydroxyalkanoates (PHA)
- Polyhydroxybutyrate (PHB)
- Polylactic Acid (PLA)
- Polylactic acid aliphatic copolymer (CPLA)
- Polymer
- Polyvinyl Alcohol (PVOH)
- Prodegradant
- Recalcitrant Residues
- Thermoplastic Polymers
- Thermosetting Polymers
- Thermoplastic Starch

2. RECENT DEVELOPMENTS IN THE BIOPOLYMER INDUSTRY INTRODUCTION

- FIBRE-REINFORCED COMPOSITES
- STARCH BASED MATERIALS
- PLANT PRODUCED POLYMERS
- MICROBIALLY PRODUCED POLYMERS
- BIOLOGICALLY-BASED RESINS, ADHESIVES, AND COATINGS
- CONTINUING RESEARCH AND DEVELOPMENT ON BIOPOLYMERS
- CONCLUSION
3. RECENT ADVANCES IN SYNTHESIS OF BIOPOLYMERS BY TRADITIONAL METHODOLOGIES

- INTRODUCTION
- BIODEGRADABLE POLYMERS
- POLYMER MODIFICATION
- A Modification of Polysaccharides
- Modification of Polypeptides
- Summary

4. POLYMERS, ENVIRONMENTALLY DEGRADABLE

- DEFINITIONS
- OPPORTUNITIES FOR ENVIRONMENTALLY DEGRADABLE PLASTICS AND POLYMERS
- TEST METHODS FOR ENVIRONMENTALLY DEGRADABLE POLYMERS
Test Methods
DEGRADATION MECHANISMS
Photodegradation
BIODEGRADATION
PRODUCTION OF ENVIRONMENTALLY DEGRADABLE POLYMERS

5. SYNTHETIC BIODEGRADABLE POLYMERS AS MEDICAL DEVICES

- POLYMER CHEMISTRY
- A Note on Nomenclature
- PACKAGING AND STERILIZATION
- PROCESSING
- Factors That Accelerate Polymer Degradation
- DEGRADATION
- COMMERCIAL BIODEGRADABLE DEVICES
6. BIOBASED PACKAGING MATERIALS FOR THE FOOD INDUSTRY INTRODUCTION

- PROPERTIES OF BIOBASED PACKAGING
- MATERIALS
- Introduction
- Food biobased materials - a definition
- Origin and description of biobased polymers
- Polymers directly extracted from bio-mass
- Polysaccharides
- Starch and derivatives
- Cellulose and derivatives
- Chitin/Chitosan
- Proteins
- Casein
- Gluten
- Soy protein
- Keratin
- Collagen
- Whey
- Zein
- Polymers produced from classical chemical synthesis
 from biobased monomers
- Polylactic acid (PLA)
- Biobased monomers
- Polymers produced directly by natural or genetically modified organisms
- Poly(hydroxyalkanoates) (PHAs)
- Bacterial cellulose
- Material properties
- Gas barrier properties
- Gas barriers and humidity
- Water vapour transmittance
- Thermal and mechanical properties
- Compostability
- Possible products produced of biobased materials
- Blown (barrier) films
- Thermoformed containers
- Foamed products
- Coated paper
- Additional developments
- Conclusions and perspectives
- FOOD BIOPACKAGING
- Introduction
- Food packaging definitions
- Primary, secondary and tertiary packaging
- Edible coatings and films
- Active packaging
- Modified atmosphere packaging
- Combination materials
- Food packaging requirements
- Replacing conventional food packaging materials
- with biobased materials - a challenge
- Biobased packaging - food quality demands
- State-of-the-art in biopackaging of foods
- Potential food applications
- Fresh meat products
- Conventional packaging materials
- Potential biobased materials
- Ready meals
- Conventional packaging materials
- Potential biobased packaging materials
- Dairy products
- Conventional packaging materials
- Potential biobased packaging materials
- Beverages
- Conventional packaging materials
- Potential biobased packaging materials
- Fruits and vegetables
• Conventional packaging materials
• Potential biobased materials
• Snacks
• Conventional packaging materials
• Potential biobased packaging materials
• Frozen products
• Conventional packaging materials
• Potential biobased packaging materials
• Dry products
• Conventional packaging materials
• Potential biobased packaging materials
• Conclusions and perspectives
• SAFETY AND FOOD CONTACT LEGISLATION
• Introduction
• Biobased materials and legislation on food contact materials
• Common EU legislation
• Biobased materials
- Petitioner procedures
- Standardized test methods
- Implications of EU legislation for food and packaging
- Industry
- Assessment of potentially undesirable Interactions
- Migration of compounds from biobased packages to contained food products
- Microbiological contamination of biobased food packages
- Penetration of microorganisms through biobased packaging materials
- Penetration of insects and rodents into biobased food packages
- Collapse due to absorbed moisture from the environment and the contained food product
- Conclusions and perspectives
- ENVIRONMENTAL IMPACT OF BIOBASED MATERIALS: BIODEGRADABILITY AND COMPOSTABILITY
Biodegradability

The composting of biobased packaging

The CEN activity

The compostable packaging

Characterization

Laboratory test of biodegradability

Disintegration under composting conditions and verification of the effects on the process

Compost quality: chemical and eco-toxicological analysis

Natural materials

Biodegradability under other environmental conditions

ENVIRONMENTAL IMPACT OF BIOBA-SED MATERIALS: LIFECYCLE ANALYSIS OF AGRICULTURE

A sustainable production of biobased products

What is LCA?

Environmental impact of agriculture
- Crops for biofuels
- The ECN study
- Environmental impact of bio-based products
- The Buwal study on starch-based plastics
- The case of hemp-based materials: LCA does not allow generic statements
- Composto’s study on bags for the collection of organic waste
- The Ecobilan’s study. The LCA of paper sacks
- The Ifeu-IBIFA-study The LCA of loose-fill-packaging
- Conclusions
- THE MARKET OF BIOBASED PACKAGING
- MATERIALS
- Introduction
- Market appeal
- Market drivers
- Marketing advantages
- Functional advantage in the product chain
- Cost advantage in the waste disposal system
- Legislative demands
- Consumers
- The market
- Today
- Tomorrow
- Price
- Conclusions
- CONCLUSION AND PERSPECTIVE
- Performance of materials
- Food applications
- Safety and legislation on materials in contact with food
- The environment
- The market of biobased packaging materials
- Perspective
7. PLASTICS FROM POTATO WASTE (SENATE JUNE 20, 1991)

- BEGIN INSERT
- PLASTICS FROM POTATO WASTE
- STARCH TO GLUCOSE TO LACTIC ACID
- LACTIC ACID INTO PLASTIC
- POTENTIAL MARKETS

8. BIODEGRADABLE PLASTICS FROM RENEWABLE SOURCES

- ANALYSIS
- Plastics and the environment
- The move to renewable sources
- Extending the recycling loop
- Biopolymers, conventional plastics and
biodegradable plastics
- The plastics sector
- Packaging
- Plastic films
- Structure of the business
- Recent developments
- Biodegradability and compostability
- Challenges ahead

9. SYNTHETIC POLYMERS FUNCTIONALIZED BY CARBOHYDRATES

- Polymerizations of the vinyl sugar monomers
- to obtain poly(vinylsaccharide)s
- Polymerization of anhydro sugars
- Anhydro sugar polymerizations
10. BIODEGRADABLE POLYOLEFINS

- General procedure for grafting of sugars onto poly(styrene maleic anhydride)
- Determination of biodegradability of polymers using aerobic microorganisms
- Weight loss data
- FTIR Spectral Data
- Molecular weight decrease after biodegradation by GPC
- Appendix 1
- Mechanism of reaction of poly(styrene maleic anhydride) with the sugar
11. PROCESS FOR THE PREPARATION OF BIODEGRADABLE SYNTHETIC POLYMERS

- FORMULA OF THE PRODUCT
- INTRODUCTION
- OBJECTIVE OF THE PRESENT INVENTION
- Wherein
- PREFERRED EMBODIMENTS
- EXPERIMENTAL/ EXAMPLES
- CLAIMS
- CONCLUSION
12. FUNGAL DEGRADATION OF CARBOHYDRATE-LINKED POLYSTYRENES

- Materials
- Synthesis of sugar linked PS-MAH (General Procedure)
- FTIR Spectra
- Test microorganisms
- Testing of the samples
- APPENDIX 1
- Reaction Mechanism
- Calculations (representative)
- For sucrose linked to poly(styrene maleic anhydride)
- APPENDIX 2
13. GLUCOSE AND GLUCOSE DERIVATIVES WITH POLY(STYRENE MALEIC ANHYDRIDE)

- ANHYDRIDE
- APPENDIX 1
- 1,2-5,6 Diisopropylidene D- glucose
- Step 1: Tritylation and acetylation of D- glucose
- Blank reaction of PSMAH in DMF solvent system with 4-DMAP as the catalyst
- Hydrolysis reaction of PSMAH using DMF as the solvent and 4-DMAP as the catalyst

14. THERMAL ANALYSIS OF SUGAR- LINKED POLY(STYRENE MALEIC ANHYDRIDE)

- Thermogravimetry
- FTIR characterization of the thermally treated products
15. BIOMINERALIZATION OF THE SUGAR-LINKED POLY(STYRENE MALEIC ANHYDRIDE)

- Experimental set-up
- Composition of minimal medium for 1 litre solution
- Solutions for the titration are as follows
- Preparation of the inoculum

16. BIODEGRADATION OF ACYLATED SUGAR-LINKED POLY(STYRENE MALEIC ANHYDRIDE)

- Procedure for Acylation of sugar-linked poly(styrene maleic anhydride) polymers
- FTIR spectroscopy of the acylated derivatives of sugar-linked poly(styrene maleic anhydride)
- Thermal studies of acylated derivatives of sugar-linked poly(styrene maleic anhydride) polymers
- Biodegradation by Serratia marscecens
- Biodegradation by Pseudomonas sp.
- Weight loss data
- Materials
- Test microorganisms
- Testing of the samples
- Weight loss data
- APPENDIX 1
- (Sugar-linked PSMAH and their acylated products degraded by Serratia marscecens and Pseudomonas sp.)
- Preparation of Reagent A, B, C, and D

17. BIOTECHNOLOGY: AN ENABLING TECHNOLOGY

- BIOTECHNOLOGY AND CO2 EMISSIONS
- THE SOYA BEAN: AN IMPORTANT RENEWABLE RESOURCE
- CHEMICALS FROM BIOLOGICAL FEEDSTOCKS
- LIFE CYCLE ASSESSMENT OF PROTEASES
18. DEGRADABLE PLASTICS FOR COMPOSTING

- CERTIFICATION AND STANDARDS
- BIODEGRADABLE POLYMERS
- DEGRADABLE PLASTICS
- WHAT USERS WANT
- QUESTIONS FOR THE FUTURE

19. STARCH BASED BIODEGRADABLE PLASTICS

- INTRODUCTION
- TECHNOLOGY COMMERCIALIZATION MODEL
- APPLICATION OF TECHNOLOGY COMMERCIALIZATION MODEL
- Starch-based Biodegradable Plastics Commercialization Case Studies
- CONCLUSION
20. BIODEGRADABLE PLASTICS FROM WHEAT STARCH AND POLYLACTIC ACID (PLA)

- INTRODUCTION AND BACKGROUND
- RESULTS FROM PREVIOUS FUNDING
- RATIONAL AND SIGNIFICANCE
- PROCEDURES/METHODOLOGY
- OTHER RELATED WORKS

21. MAKING PACKAGING GREENER BIODEGRADABLE PLASTICS

- PLASTICS THAT BREAK DOWN
- PLASTICS CAN BE PRODUCED FROM STARCH
- PLASTICS CAN ALSO BE PRODUCED BY BACTERIA
WHAT’S THE COST?
BIODEGRADABLE AND AFFORDABLE
MULCH FILM FROM BIODEGRADABLE PLASTICS
POTS YOU CAN PLANT
DIFFERENT POLYMER BLENDS FOR DIFFERENT PRODUCTS
LANDFILL SITES AREN'T COMPOST HEAPS
COMPOSTING THE PACKAGING WITH ITS CONTENTS
AN OLYMPIC EFFORT RECYCLING 76
PER CENT OF WASTE

22. PET MATERIALS AND APPLICATIONS

INTRODUCTION
POLYMERISATION AND MANUFACTURING PROCESSES
Manufacturing plants
STRUCTURES, MORPHOLOGY AND ORIENTATION
- Structure
- Morphology
- Orientation
- Creep
- PROPERTIES
- Molecular weight and intrinsic viscosity
- End group
- Thermal properties
- RHEOLOGY AND MELT VISCOSITY
- Melt viscosity
- Melt flow
- Moulding shrinkage
- MOISTURE UPTAKE AND POLYMER DRYING
- Moisture level
- Polymer drying
- DEGRADATION REACTIONS
- Thermal and thermal oxidative degradation

www.entrepreneurindia.co
- Environmental degradation
- REHEAT CHARACTERISTICS
- GAS BARRIER PROPERTIES
- AMORPHOUS POLYESTERS
- Homopolymers
- Low copolymers
- Medium copolymers
- High copolymers
- CRYSTALLINE POLYMERS
- POLYMER BLENDS
- APPLICATIONS
- TRENDS
- GLOBALS

23. PET FILM AND SHEET

- Extrusion
- Casting
The forward draw preheat (FWDPH)
The forward draw (FWD)
The sideways draw preheat (SWDPH)
The sideways draw (SWD)

24. INJECTION AND CO-INJECTION PREFORM TECHNOLOGIES

- MULTILAYER CHARACTERISTICS
- APPLICATIONS
- Performance-driven applications
- Economics - or legislative-driven applications
- Combination applications
- CLOSURE VS BOTTLE PERMEATION
- CONTAINER PERFORMANCE
- Barrier properties
- Oxygen barrier
- Carbon dioxide barrier
- Scavenger property
- WALL STRUCTURE
- PREFORM AND BOTTLE DESIGN
- Permeation through finish, sidewall and base
- Controlled fill
- HEADSPACE OXYGEN ABSORPTION
- OXYGEN DESORPTION FROM PET
- BEER CONTAINERS
- SMALL JUICE CONTAINERS
- SMALL CSD CONTAINERS
- CORE LAYER VOLUMES
- RECYCLING
- COMPARISON OF CO-INJECTION TECHNOLOGIES
- CO-INJECTION MOLDING EQUIPMENT
25. INJECTION BLOW MOULDING

- INTRODUCTION
- BASIC PRINCIPLES
- HISTORY
- PROCESS IDENTIFICATION
- COMMERCIAL PROCESSES
- Rotary table machines: Jomar, Uniloy and similar
- TOOLING
- PROCREA
- MATERIALS
- APPLICATIONS
- Machine and process capabilities
Niir Project Consultancy Services (NPCS) can provide Process Technology Book on

Biodegradable Plastics and Polymers

(Coated Paper, Shopping Bags, Landfill Cover Film, Plant Phytotoxicity Testing, Toxicity, Fillers, Activated Sludge, Copolyesters, Monomer, Polymer, Fibre-Reinforced Composites, Biodegradable Polymers, Biodegradation, Polysaccharides, Collagen, Bacterial Cellulose, Biobased Materials)

See more

https://goo.gl/4Ybi5C
https://goo.gl/o0b5Rs
https://goo.gl/tZPmDt

www.entrepreneurindia.co
Visit us at
www.entrepreneurindia.co
Take a look at Niir Project Consultancy Services on #Street View

https://goo.gl/VstWkd

Locate us on Google Maps

https://goo.gl/maps/BKkUtq9gevT2

www.entrepreneurindia.co
Our inexhaustible Client list includes public-sector companies, Corporate Houses, Government undertaking, individual entrepreneurs, NRI, Foreign investors, non-profit organizations and educational institutions from all parts of the World. The list is just a glimpse of our esteemed & satisfied Clients.

Click here to take a look
https://goo.gl/G3ICjV
Free Instant Online Project Identification & Selection Search Facility

Selection process starts with the generation of a product idea. In order to select the most promising project, the entrepreneur needs to generate a few ideas about the possible projects. Here’s we offer a best and easiest way for every entrepreneur to searching criteria of projects on our website www.entrepreneurindia.co that is “Instant Online Project Identification and Selection”
NPCS Team has simplified the process for you by providing a "Free Instant Online Project Identification & Selection" search facility to identify projects based on multiple search parameters related to project costs namely: Plant & Machinery Cost, Total Capital Investment, Cost of the project, Rate of Return% (ROR) and Break Even Point % (BEP). You can sort the projects on the basis of mentioned pointers and identify a suitable project matching your investment requisites.

Click here to go

http://www.entrepreneurindia.co/project-identification
Contact us

Niir Project Consultancy Services
106-E, Kamla Nagar, Opp. Spark Mall,
New Delhi-110007, India.

Email: npcs.ei@gmail.com, info@entrepreneurindia.co
Tel: +91-11-23843955, 23845654, 23845886, 8800733955
Mobile: +91-9811043595
Website: www.entrepreneurindia.co, www.niir.org

Take a look at NIIR PROJECT CONSULTANCY SERVICES on #StreetView

https://goo.gl/VstWkd
Niir Project Consultancy Services
An ISO 9001:2008 Company

www.entrepreneurindia.co
One of the leading reliable names in industrial world for providing the most comprehensive technical consulting services

We adopt a systematic approach to provide the strong fundamental support needed for the effective delivery of services to our Clients’ in India & abroad
We at NPCS want to grow with you by providing solutions scale to suit your new operations and help you reduce risk and give a high return on application investments. We have successfully achieved top-notch quality standards with a high level of customer appreciation resulting in long lasting relation and large amount of referral work through technological breakthrough and innovative concepts. A large number of our Indian, Overseas and NRI Clients have appreciated our expertise for excellence which speaks volumes about our commitment and dedication to every client's success.
We bring deep, functional expertise, but are known for our holistic perspective: we capture value across boundaries and between the silos of any organization. We have proven a multiplier effect from optimizing the sum of the parts, not just the individual pieces. We actively encourage a culture of innovation, which facilitates the development of new technologies and ensures a high quality product.
What do we offer?

- Project Identification
- Detailed Project Reports/Pre-feasibility Reports
- Business Plan
- Industry Trends
- Market Research Reports
- Technology Books and Directory
- Databases on CD-ROM
- Laboratory Testing Services
- Turnkey Project Consultancy/Solutions
- Entrepreneur India (An Industrial Monthly Journal)
We have two decades long experience in project consultancy and market research field

We empower our customers with the prerequisite know-how to take sound business decisions

We help catalyze business growth by providing distinctive and profound market analysis

We serve a wide array of customers, from individual entrepreneurs to Corporations and Foreign Investors

We use authentic & reliable sources to ensure business precision
Our Approach

1. Requirement collection
2. Thorough analysis of the project
3. Economic feasibility study of the Project
4. Market potential survey/research
5. Report Compilation

www.entrepreneurindia.co
Who do we serve?

- Public-sector Companies
- Corporates
- Government Undertakings
- Individual Entrepreneurs
- NRI’s
- Foreign Investors
- Non-profit Organizations, NBFC’s
- Educational Institutions
- Embassies & Consulates
- Consultancies
- Industry / trade associations
Sectors We Cover

- Ayurvedic And Herbal Medicines, Herbal Cosmetics
- Alcoholic And Non Alcoholic Beverages, Drinks
- Adhesives, Industrial Adhesive, Sealants, Glues, Gum & Resin
- Activated Carbon & Activated Charcoal
- Aluminium And Aluminium Extrusion Profiles & Sections,
- Bio-fertilizers And Biotechnology
- Breakfast Snacks And Cereal Food
- Bicycle Tyres & Tubes, Bicycle Parts, Bicycle Assembling
Sectors We Cover

- Bamboo And Cane Based Projects
- Building Materials And Construction Projects
- Biodegradable & Bioplastic Based Projects
- Chemicals (Organic And Inorganic)
- Confectionery, Bakery/Baking And Other Food
- Cereal Processing
- Coconut And Coconut Based Products
- Cold Storage For Fruits & Vegetables
- Coal & Coal Byproduct
Sectors We Cover

- Copper & Copper Based Projects
- Dairy/Milk Processing
- Disinfectants, Pesticides, Insecticides, Mosquito Repellents,
- Electrical, Electronic And Computer based Projects
- Essential Oils, Oils & Fats And Allied
- Engineering Goods
- Fibre Glass & Float Glass
- Fast Moving Consumer Goods
- Food, Bakery, Agro Processing
Sectors We Cover

- Fruits & Vegetables Processing
- Ferro Alloys Based Projects
- Fertilizers & Biofertilizers
- Ginger & Ginger Based Projects
- Herbs And Medicinal Cultivation And Jatropha (Biofuel)
- Hotel & Hospitality Projects
- Hospital Based Projects
- Herbal Based Projects
- Inks, Stationery And Export Industries
Sectors We Cover

- Infrastructure Projects
- Jute & Jute Based Products
- Leather And Leather Based Projects
- Leisure & Entertainment Based Projects
- Livestock Farming Of Birds & Animals
- Minerals And Minerals
- Maize Processing (Wet Milling) & Maize Based Projects
- Medical Plastics, Disposables Plastic Syringe, Blood Bags
- Organic Farming, Neem Products Etc.
Sectors We Cover

- Paints, Pigments, Varnish & Lacquer
- Paper And Paper Board, Paper Recycling Projects
- Printing Inks
- Packaging Based Projects
- Perfumes, Cosmetics And Flavours
- Power Generation Based Projects & Renewable Energy Based Projects
- Pharmaceuticals And Drugs
- Plantations, Farming And Cultivations
- Plastic Film, Plastic Waste And Plastic Compounds
- Plastic, PVC, PET, HDPE, LDPE Etc.
Sectors We Cover

- Potato And Potato Based Projects
- Printing And Packaging
- Real Estate, Leisure And Hospitality
- Rubber And Rubber Products
- Soaps And Detergents
- Stationary Products
- Spices And Snacks Food
- Steel & Steel Products
- Textile Auxiliary And Chemicals
Sectors We Cover Cont…

- Township & Residential Complex
- Textiles And Readymade Garments
- Waste Management & Recycling
- Wood & Wood Products
- Water Industry (Packaged Drinking Water & Mineral Water)
- Wire & Cable
Contact us

Niir Project Consultancy Services
106-E, Kamla Nagar, Opp. Spark Mall,
New Delhi-110007, India.
Email: npcs.ei@gmail.com, info@entrepreneurindia.co
Tel: +91-11-23843955, 23845654, 23845886, 8800733955
Mobile: +91-9811043595
Website: www.entrepreneurindia.co, www.niir.org
Take a look at NIIR PROJECT CONSULTANCY SERVICES on #StreetView
https://goo.gl/VstWkd
Follow Us

- https://www.linkedin.com/company/niir-project-consultancy-services
- https://www.facebook.com/NIIR.ORG
- https://www.youtube.com/user/NIIRproject
- https://plus.google.com/+EntrepreneurIndiaNewDelhi
- https://twitter.com/npcs_in
- https://www.pinterest.com/npcsindia/
THANK YOU!!!

For more information, visit us at:

www.entrepreneurindia.co